• HOME
    KOREAN
    CHINESS
    SITE MAP
    JOIN
  • Username (Site Login ID)
  • Password
  • Forgot your password?

  • °ÔÀÓ¼³°è | Cases and Studies of Game Design in Lottery & Gambling | êý戏设计

    date : 2015-05-20 01:10|hit : 1949
    Article] Probability and time
    DocNo of ILP: 665

    Doc. Type: Article

    Title: Probability and time

    Authors: Zaffalon, M; Miranda, E

    Full Name of Authors: Zaffalon, Marco; Miranda, Enrique

    Keywords by Author: Temporal reasoning; Imprecise probabilities; Conditioning; Lower previsions; Sets of desirable gambles; Coherence; Conglomerability

    Keywords Plus: BELIEF REVISION; SUBJECTIVE-PROBABILITY; DYNAMIC COHERENCE; LOWER PREVISIONS; LOGIC; KINEMATICS; ADDITIVITY; ARGUMENTS; EXTENSION; INFERENCE

    Abstract: Probabilistic reasoning is often attributed a temporal meaning, in which conditioning is regarded as a normative rule to compute future beliefs out of current beliefs and observations. However, the well-established 'updating interpretation' of conditioning is not concerned with beliefs that evolve in time, and in particular with future beliefs. On the other hand, a temporal justification of conditioning was proposed already by De Moivre and Bayes, by requiring that current and future beliefs be consistent. We reconsider the latter approach while dealing with a generalised version of the problem, using a behavioural theory of imprecise probability in the form of coherent lower previsions as well as of coherent sets of desirable gambles, and letting the possibility space be finite or infinite. We obtain that using conditioning is normative, in the imprecise case, only if one establishes future behavioural commitments at the same time of current beliefs. In this case it is also normative that present beliefs be conglomerable, which is a result that touches on a long-term controversy at the foundations of probability. In the remaining case, where one commits to some future behaviour after establishing present beliefs, we characterise the several possibilities to define consistent future assessments; this shows in particular that temporal consistency does not preclude changes of mind. And yet, our analysis does not support that rationality requires consistency in general, even though pursuing consistency makes sense and is useful, at least as a way to guide and evaluate the assessment process. These considerations narrow down in the special case of precise probability, because this formalism cannot distinguish the two different situations illustrated above: it turns out that the only consistent rule is conditioning and moreover that it is not rational to be willing to stick to precise probability while using a rule different from conditioning to compute future beliefs; rationality requires in addition the disintegrability of the present-time probability. (C) 2013 Elsevier B.V. All rights reserved.

    Cate of OECD: Computer and information sciences

    Year of Publication: 2013

    Business Area: gamble

    Detail Business: gamble

    Country: Netherlands

    Study Area:

    Name of Journal: ARTIFICIAL INTELLIGENCE

    Language: English

    Country of Authors: [Zaffalon, Marco] Ist Dalle Molle Studi Intelligenza Artificiale ID, CH-6928 Lugano, Switzerland; [Miranda, Enrique] Univ Oviedo, Dept Stat & Operat Res, Oviedo 33007, Spain

    Press Adress: Zaffalon, M (reprint author), Ist Dalle Molle Studi Intelligenza Artificiale ID, Galleria 2, CH-6928 Lugano, Switzerland.

    Email Address: zaffalon@idsia.ch; mirandaenrique@uniovi.es

    Citaion:

    Funding: Swiss NSF [200020_134759/1, 200020_137680/1]; Hasler foundation [10030]; Spanish project [MTM2010-17844]

    Lists of Citation: ALCHOURRON CE, 1985, J SYMBOLIC LOGIC, V50, P510, DOI 10.2307/2274239; ARMENDT B, 1980, PHILOS SCI, V47, P583, DOI 10.1086/288958; Armendt B., 1992, PSA 1992, V1, P217; Augustin T., 2003, ISIPTA 03, V18, P31; Bonanno G, 2007, ARTIF INTELL, V171, P144, DOI 10.1016/j.artint.2006.12.001; de Finetti B, 1974, THEORY PROBABILITY C; de Finetti B., 1970, TEORIA PROBABILITA; de Finetti B., 1972, PROBABILITY INDUCTIO; de Finetti B., 1930, RENDICONTI REALE I L, V63, P414; de Cooman G, 2004, ARTIF INTELL, V159, P75, DOI [10.1016/j.artint.2004.05.006, 10.1016/j.artini.2004.05.006]; de Cooman G, 2005, ANN MATH ARTIF INTEL, V45, P5, DOI 10.1007/s10472-005-9006-x; de Cooman G, 2008, ARTIF INTELL, V172, P1400, DOI 10.1016/j.artint.2008.03.001; DIACONIS P, 1982, J AM STAT ASSOC, V77, P822, DOI 10.2307/2287313; Dubins L.E., 1975, ANN PROBAB, V3, P88; Dubois D., 1992, International Journal of Approximate Reasoning, V6, DOI 10.1016/0888-613X(92)90027-W; DUBOIS D, 1994, INT J INTELL SYST, V9, P61, DOI 10.1002/int.4550090105; KATSUNO H, 1991, PRINCIPLES OF KNOWLEDGE REPRESENTATION AND REASONING, P387; Gaifmann Haim, 1988, CAUSATION CHANCE CRE, P191; Gardenfors P., 1988, DECISION PROBABILITY; Gardenfors P., 1988, KNOWLEDGE FLUX MODEL; Gill RD, 1997, P 1 SEATTL S BIOST S, P255; Goldstein M., 1985, BAYESIAN STATISTICS, V2, P231; Goldstein M, 2001, J STAT PLAN INFER, V94, P73, DOI 10.1016/S0378-3758(00)00229-9; Goldstein M., 1997, STRUCTURES NORMS SCI, P57; GOLDSTEIN M, 1983, J AM STAT ASSOC, V78, P817, DOI 10.2307/2288190; Grunwald PD, 2011, J ARTIF INTELL RES, V42, P393; Hanany E., 2007, THEORETICAL EC, V2, P261; Howson C, 2011, HBK PHILOS SCI, V7, P441; Howson C, 2009, J APPL LOGIC, V7, P177, DOI 10.1016/j.jal.2007.11.003; Jeffrey R., 2004, SUBJECTIVE PROBABILI; Jeffrey R., 1988, CAUSATION CHANCE CRE, P221; Jeffrey R., 1965, LOGIC DECISION; Kadane JB, 2001, J STAT PLAN INFER, V94, P89; Kadane JB, 1996, J AM STAT ASSOC, V91, P1228, DOI 10.2307/2291741; Kyburg H., 1980, STUDIES SUBJECTIVE P; Kyburg H. E., 1964, STUDIES SUBJECTIVE P; LEVI I, 1987, MONIST, V70, P193; Levi I., 2002, PHILOS SCI S, V69, P235; MAHER P, 1992, PHILOS SCI, V59, P120, DOI 10.1086/289657; Miranda E, 2009, FUZZY SET SYST, V160, P1286, DOI 10.1016/j.fss.2008.10.005; Miranda E, 2012, INT J APPROX REASON, V53, P1200, DOI 10.1016/j.ijar.2012.06.015; Miranda E., 2012, SYNERGIES SOFT COMPU, V190, P419; Miranda E, 2007, INT J APPROX REASON, V46, P188, DOI 10.1016/j.ijar.2006.12.009; Miranda E, 2010, ANN MATH ARTIF INTEL, V60, P251, DOI 10.1007/s10472-011-9231-4; MORAL S, 1995, MATHEMATICAL MODELS FOR HANDLING PARTIAL KNOWLEDGE IN ARTIFICIAL INTELLIGENCE, P113; Pelessoni R, 2009, INT J APPROX REASON, V50, P612, DOI 10.1016/j.ijar.2008.10.002; PEPPAS P, 2008, HDB KNOWLEDGE REPRES, V3, P317, DOI 10.1016/S1574-6526(07)03008-8; Ramsey F., 1931, FDN MATH OTHER LOGIC, P156; Schervisch M.J., 2010, EQUIVALENCE CO UNPUB; SCHERVISH MJ, 1984, Z WAHRSCHEINLICHKEIT, V66, P205, DOI 10.1007/BF00531529; Segerberg K, 1999, TR LOG STUD LOG LIB, V5, P135; Seidenfeld T., 1998, SANKHYA A, V60, P476; Seidenfeld T., 1994, Logic, Methodology and Philosophy of Science IX. Proceedings of the Ninth International Congress; Seidenfeld T, 2004, SYNTHESE, V140, P69, DOI 10.1023/B:SYNT.0000029942.11359.8d; SHAFER G, 1982, ANN STAT, V10, P1075, DOI 10.1214/aos/1176345974; SHAFER G, 1985, INT STAT REV, V53, P261, DOI 10.2307/1402890; Shafer G, 2003, INT J APPROX REASON, V33, P1, DOI 10.1016/S0888-613X(02)00134-2; SKYRMS B, 1987, PHILOS SCI, V54, P1, DOI 10.1086/289350; Skyrms B., 1990, DYNAMICS RATIONAL DE; SKYRMS B, 1993, PHILOS SCI, V60, P320, DOI 10.1086/289735; Tarski A., 1956, LOGIC SEMANTICS META; Teller P., 1973, SYNTHESE, P212; Troffaes MCM, 2006, ADV SOFT COMP, P201; VANFRAASSEN BC, 1995, PHILOS STUD, V77, P7; Van Ditmarsch HP, 2005, SYNTHESE, V147, P229, DOI 10.1007/s11229-005-1349-7; VANFRAASSEN BC, 1984, J PHILOS, V81, P235; Vovk Vladimir, 2001, PROBABILITY FINANCE; Walley P., 1991, STAT REASONING IMPRE; Williams PM, 2007, INT J APPROX REASON, V44, P366, DOI 10.1016/j.ijar.2006.07.019; WILLIAMS PM, 1980, BRIT J PHILOS SCI, V31, P131, DOI 10.1093/bjps/31.2.131; Williams P.M., 1975, TECHNICAL REPORT; Zaffalon M, 2009, J ARTIF INTELL RES, V34, P757

    Number of Citaion: 72

    Publication: ELSEVIER SCIENCE BV

    City of Publication: AMSTERDAM

    Address of Publication: PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS

    ISSN: 0004-3702

    29-Character Source Abbreviation: ARTIF INTELL

    ISO Source Abbreviation: Artif. Intell.

    Volume: 198

    Version:

    Start of File: 1

    End of File: 51

    DOI: 10.1016/j.artint.2013.02.005

    Number of Pages: 51

    Web of Science Category: Computer Science, Artificial Intelligence

    Subject Category: Computer Science

    Document Delivery Number: 152NW

    Unique Article Identifier: WOS:000319539400001

    [ÀÌ °Ô½Ã¹°Àº HyeJung Mo¡¦´Ô¿¡ ÀÇÇØ 2015-05-20 14:56:52 GAMBLING¿¡¼­ À̵¿ µÊ]
    reply : 0
  • list
  • prev
  • next